Existência de matéria de quarks fria na Natureza Modelos e Observações

Rodrigo Alvares de Souza Orientador: Prof. Dr. Jorge Ernesto Horvath

Instituto de Astronomia, Geofísica e Ciências Atmosféricas da USP

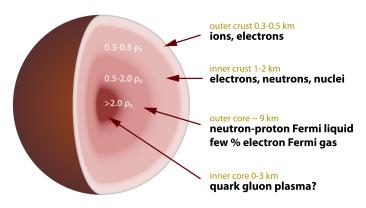
3 de maio de 2016

Outline

- Objetivos
- 2 Estrelas de Nêutrons e Estrutura Estelar
- 3 Hadrodinâmica Quântica e CQM
- 4 Presença de CQM em Estrelas de Nêutrons
- Conclusões

Objetivos

- Estudo da matéria superdensa.
- ullet Estudo das transições de fase hádron o matéria de quarks fria.
- Composição das estrelas de nêutrons em face das observações.



Estrelas de Nêutrons e Estrutura Estelar

Observações

NATURE | LETTER

日本語要約

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts & J. W. T. Hessels

Affiliations | Contributions | Corresponding author

Nature 467, 1081–1083 (28 October 2010) | doi:10.1038/nature09466 Received 07 July 2010 | Accepted 01 September 2010 | Published online 27 October 2010

RESEARCH ARTICLE

A Massive Pulsar in a Compact Relativistic Binary

John Antoniadis¹, Paulo C. C. Freire¹, Norbert Wex¹, Thomas M. Tauris^{2,1}, Ryan S. Lynch², Marten H. van Kerkwijk², Michael Kramer^{1,5}, Cees Bassa⁵, Vik S. Dhillon⁶, Thomas Driebe¹, Jason W. T. Hesseise⁵, Victoria M. Kaspi⁵, Vladislav I. Kondratlev^{6,5}, Norbert Langer², Thomas R. Marsh¹, Maura A. McLaughlin^{1,2}, Timothy T. Pennucci^{1,3}, Scott M. Ransom^{1,4}, Ingrid H. Stairs^{1,5}, Joris P. W. Verbiest¹, David G. Whelan^{1,5}

Composição das Estrelas de Nêutrons

- Não há consenso sobre a equação de estado das estrelas de nêutrons.
- Diferentes abordagens podem levar à massas máximas diferentes.
- Cada equação de estado produz uma sequência única de estrelas no diagrama massa-raio.

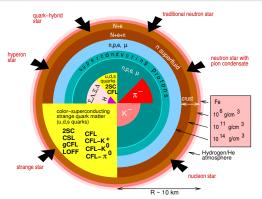
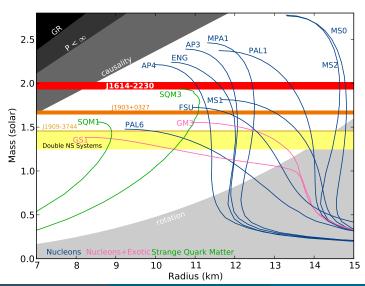


Diagrama Massa-Raio



Cálculo da Estrutura Estelar - Limite Não Relativístico

Estrelas newtonianas, não relativísticas são modeladas pelas equações de equilíbrio hidrostático

$$\frac{dP(r)}{dr} = -\frac{GM(r)\rho(r)}{r^2}$$

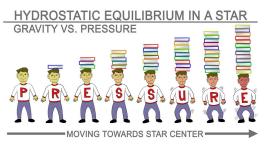
$$\frac{dm}{dr} = 4\pi r^2 \rho(r)$$

Cálculo da Estrutura Estelar - Limite Não Relativístico

Estrelas newtonianas, não relativísticas são modeladas pelas equações de equilíbrio hidrostático

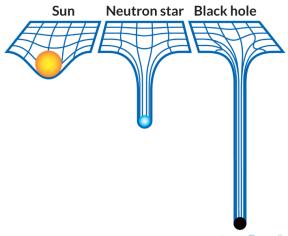
$$\frac{dP(r)}{dr} = -\frac{GM(r)\rho(r)}{r^2}$$

$$\frac{dm}{dr} = 4\pi r^2 \rho(r)$$



Cálculo da Estrutura Estelar - Abordagens

- Equações de Tolman-Oppenheimer-Volkoff
- Framework de Maxwell-Einstein-Fermi



Cálculo da Estrutura Estelar - Relatividade Geral

Estrelas de nêutrons, por sua alta concentração de matéria, devem ser modeladas de acordo com a Relatividade Geral.

$$R^{\mu\nu} - \frac{1}{2}g^{\mu\nu}R = -\frac{8\pi G}{c^4}T^{\mu\nu}$$

Solução de Schwarzschild - Exterior

$$d au^2=\left(1-rac{2\mathit{GM}}{\mathit{r}}
ight)\mathit{dt}^2-\left(1-rac{2\mathit{GM}}{\mathit{r}}
ight)^{-1}\mathit{dr}^2-\mathit{r}^2(\mathit{d}\theta^2+\sin^2\theta\mathit{d}\phi^2)$$

Fluido perfeito o Solução de Schwarzschild com massa

$$T^{\mu\nu} = (\epsilon + P)u^{\mu}u^{\nu} + Pu^{\mu\nu}$$

Cálculo da Estrutura Estelar - TOV

A partir da solução de Schwarzschild para as equações de Einstein, com constante cosmológica nula, derivam-se as equações de Tolman-Oppenheimer-Volkoff:

$$\frac{dP(r)}{dr} = -\frac{\epsilon(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\epsilon(r)} \right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)} \right] \left[1 - \frac{2M(r)}{r} \right]^{-1}$$
$$\frac{dM(r)}{dr} = 4\pi r^2 \epsilon(r)$$

Cálculo da Estrutura Estelar - TOV

A partir da solução de Schwarzschild para as equações de Einstein, com constante cosmológica nula, derivam-se as equações de Tolman-Oppenheimer-Volkoff:

$$\frac{dP(r)}{dr} = -\frac{\epsilon(r)M(r)}{r^2} \left[1 + \frac{P(r)}{\epsilon(r)} \right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)} \right] \left[1 - \frac{2M(r)}{r} \right]^{-1}$$
$$\frac{dM(r)}{dr} = 4\pi r^2 \epsilon(r)$$

IMPORTANTE

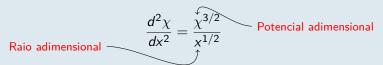
- Toda a microfísica é modelada na equação de estado.
- Modelo é considerado a abordagem canônica para estrelas estáticas e sem rotação.

Framework Maxwell-Einstein-Fermi(Rotondo et al., 2011)

- Descrição de esferas auto-gravitantes com origem no modelo de Thomas-Fermi atômico.
- Possíveis consequências do modelo: Presença dos campos elétricos na interface do núcleo das estrelas e existência da polarização do vácuo nesta interface.
- Teoria quântica da estrutura eletrônica de sistemas de muitos corpos, desenvolvida semi-classicamente pouco depois da introdução da equação de Schrödinger.
- Modelo construído aplicando sucessivas aproximações conforme o número atômico Z cresce.

Equação de Thomas-Fermi

• Thomas-Fermi Atômica



Equação de Thomas-Fermi

Thomas-Fermi Atômica

Raio adimensional
$$\frac{d^2\chi}{dx^2} = \frac{\chi^{3/2}}{x^{1/2}}$$
 Potencial adimensional

Thomas-Fermi Relativística - Núcleos super pesados

$$\frac{d^2\chi}{dx^2} = \frac{\chi^{3/2}}{x^{1/2}} \left[1 + \left(\frac{Z}{Z_c} \right)^{4/3} \frac{\chi(x)}{x} \right]^{3/2}$$

Equação de Thomas-Fermi

Thomas-Fermi Atômica

Raio adimensional
$$\frac{d^2\chi}{dx^2} = \frac{\chi^{3/2}}{x^{1/2}}$$
 Potencial adimensional

Thomas-Fermi Relativística - Núcleos super pesados

$$\frac{d^2\chi}{dx^2} = \frac{\chi^{3/2}}{x^{1/2}} \left[1 + \left(\frac{Z}{Z_c} \right)^{4/3} \frac{\chi(x)}{x} \right]^{3/2}$$

ullet Thomas-Fermi Relativística - Núcleos extensos $(Approx 10^2-10^6)$

$$\frac{1}{3x}\frac{d^2\chi}{dx^2} = -\frac{\alpha}{\Delta^3}\theta(x_{nuc} - x) + \frac{4\alpha}{9\pi} \left[\frac{\chi^2}{x^2} + \frac{m_e}{m_\pi} \frac{\chi(x)}{x} \right]^{3/2}$$

Framework de Maxwell-Einstein-Fermi

•
$$M' = 4\pi r^2 \frac{\mathcal{E}}{c^2} - \frac{4\pi r^3}{c^2} e^{-\nu/2} \hat{V}'(n_p - n_e)$$

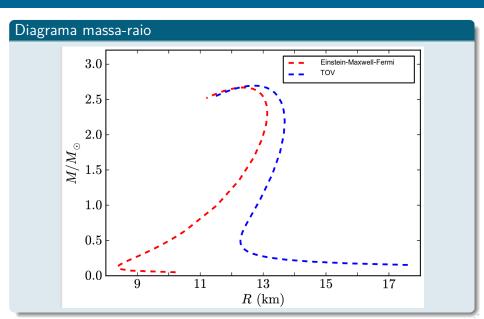
•
$$\nu' = \frac{2G}{c^2} \frac{4\pi r^3 P/c^2 + M - r^3 E^2/c^2}{r^2 \left(1 - \frac{2GM}{c^2 r} + \frac{Gr^2}{c^4} E^2\right)}$$

•
$$P' + \frac{\nu'}{2}(\mathcal{E} + P) = -(P^{em})' - \frac{4P^{em}}{r}$$

$$\hat{V}'' + \frac{2}{r}\hat{V}' \left[1 - \frac{r(\nu' + \lambda')}{4} \right] = -4\pi\alpha\hbar c \,\mathrm{e}^{\nu/2}\mathrm{e}^{\lambda}$$

$$\times \left\{ n_p - \frac{\mathrm{e}^{-3\nu/2}}{3\pi^2} [\hat{V}^2 + 2m_e c^2 \hat{V} - m_e^2 c^4 (\mathrm{e}^{\nu} - 1)]^{3/2} \right\}$$

Framework de Maxwell-Einstein-Fermi



Conclusões parciais

- Modelo é construído basicamente aplicando um scaling no modelo de Thomas-Fermi atômico.
- Construção baseada em um raciocínio circular.
- Leva em consideração não apenas os efeitos da relatividade geral, mas também a composição do objeto que se quer modelar.
- Abordagem não é adequada para modelos de EoS's híbridas.

Conclusões parciais

- Modelo é construído basicamente aplicando um scaling no modelo de Thomas-Fermi atômico.
- Construção baseada em um raciocínio circular.
- Leva em consideração não apenas os efeitos da relatividade geral, mas também a composição do objeto que se quer modelar.
- Abordagem não é adequada para modelos de EoS's híbridas.

Baseado nestas conclusões, foi utilizada a abordagem canônica de Tolman-Oppenheimer-Volkoff no trabalho.

Hadrodinâmica Quântica e CQM

Hadrodinâmica Quântica

- Matéria nuclear pode ser descrita através de modelos efetivos, considerando apenas graus de liberdade dos núcleons.
- Modelos efetivos foram comumente apresentados através de teorias relativísticas de campo médio.
- Possuem parâmetros à serem ajustados através de dados experimentais.

Hadrodinâmica Quântica

- Matéria nuclear pode ser descrita através de modelos efetivos, considerando apenas graus de liberdade dos núcleons.
- Modelos efetivos foram comumente apresentados através de teorias relativísticas de campo médio.
- Possuem parâmetros à serem ajustados através de dados experimentais.

Vários modelos na literatura:

- Modelo σ - ω de Walecka.
- Modelo Zimanyi e Moszkowski.
- Modelo do acoplamento ajústavel de Taurines et al. (2001).

Modelo $\sigma - \omega - \rho - \delta - \phi$ (SWRDP)

- Proposto por Gomes et al.(2015) baseado no modelo de acoplamento ajustável.
- Iniciativa para unificar o modelo de Taurines e Zimanyi/Moszkowski.
- Considera um acoplamento derivativo parametrizado que simula as forças de muitos corpos (parâmetro ζ) pela inclusão de auto-interações não lineares e termos de interação méson-méson para os mésons escalares.

Inclui o conjunto completo de mésons relevantes na escala de energia:

- $\omega \phi$ (vetor-escalar)
- $\sigma \sigma^*$ (escalar-isoescalar)
- ρ (vetor-isovetor) e δ (escalar-isovetor)

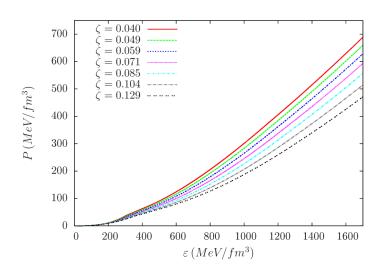
Modelo SWRDP - Lagrangiana

$$\begin{split} \mathcal{L} &= \sum_{b} \overline{\psi}_{b} \left[\gamma_{\mu} \left(i \partial^{\mu} - g_{\omega b \xi}^{*} \omega^{\mu} - g_{\phi b \kappa}^{*} \phi^{\mu} - \frac{1}{2} g_{\varrho b \eta}^{*} \boldsymbol{\tau} \cdot \boldsymbol{\varrho}^{\mu} \right) \right. \\ &- \left(1 + \frac{g_{\sigma b} \sigma + g_{\sigma^{*} b} \sigma^{*} + \frac{1}{2} g_{\delta b} \boldsymbol{\tau} \cdot \boldsymbol{\delta}}{\zeta m_{b}} \right)^{-\zeta} m_{b} \right] \psi_{b} \\ &+ \left(\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) + \left(\frac{1}{2} \partial_{\mu} \sigma^{*} \partial^{\mu} \sigma^{*} - m_{\sigma^{*}}^{2} \sigma^{*2} \right) \\ &+ \frac{1}{2} \left(-\frac{1}{2} \omega_{\mu \nu} \omega^{\mu \nu} + m_{\omega}^{2} \omega_{\mu} \omega^{\mu} \right) + \frac{1}{2} \left(-\frac{1}{2} \phi_{\mu \nu} \phi^{\mu \nu} + m_{\phi}^{2} \phi_{\mu} \phi^{\mu} \right) \\ &+ \frac{1}{2} \left(-\frac{1}{2} \varrho_{\mu \nu} \cdot \varrho^{\mu \nu} + m_{\varrho}^{2} \varrho_{\mu} \cdot \varrho^{\mu} \right) + \left(\frac{1}{2} \partial_{\mu} \delta \cdot \partial^{\mu} \delta - m_{\delta}^{2} \delta^{2} \right) \\ &+ \sum_{l} \overline{\psi}_{l} \gamma_{\mu} \left(i \partial^{\mu} - m_{l} \right) \psi_{l}. \end{split}$$

Modelo SWRDP - Lagrangiana

$$\begin{split} \mathcal{L} &= \sum_{b} \overline{\psi}_{b} \left[\gamma_{\mu} \left(i \partial^{\mu} - g_{\omega b \xi}^{*} \omega^{\mu} - g_{\phi b \kappa}^{*} \phi^{\mu} - \frac{1}{2} g_{\varrho b \eta}^{*} \boldsymbol{\tau} \cdot \boldsymbol{\varrho}^{\mu} \right) \right. \\ &- \left(1 + \frac{g_{\sigma b} \sigma + g_{\sigma^{*} b} \sigma^{*} + \frac{1}{2} g_{\delta b} \boldsymbol{\tau} \cdot \boldsymbol{\delta}}{\zeta} \right) \underbrace{ - \zeta \atop m_{b}} \psi_{b} \\ &+ \left(\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) + \left(\frac{1}{2} \partial_{\mu} \sigma^{*} \partial^{\mu} \sigma^{*} - m_{\sigma^{*}}^{2} \sigma^{*2} \right) \\ &+ \frac{1}{2} \left(-\frac{1}{2} \omega_{\mu \nu} \omega^{\mu \nu} + m_{\omega}^{2} \omega_{\mu} \omega^{\mu} \right) + \frac{1}{2} \left(-\frac{1}{2} \phi_{\mu \nu} \phi^{\mu \nu} + m_{\phi}^{2} \phi_{\mu} \phi^{\mu} \right) \\ &+ \frac{1}{2} \left(-\frac{1}{2} \varrho_{\mu \nu} \cdot \varrho^{\mu \nu} + m_{\varrho}^{2} \varrho_{\mu} \cdot \varrho^{\mu} \right) + \left(\frac{1}{2} \partial_{\mu} \delta \cdot \partial^{\mu} \delta - m_{\delta}^{2} \delta^{2} \right) \\ &+ \sum_{l} \overline{\psi}_{l} \gamma_{\mu} \left(i \partial^{\mu} - m_{l} \right) \psi_{l}. \end{split}$$

Modelo SWRDP - EoS



Matéria de Quarks Fria

- O Modelo Padrão aponta os quarks como uma das partículas fundamentais no universo.
- QCD: teoria fundamental que descreve a matéria de quarks através da interação forte entre férmions que possuem carga de cor.

Matéria de Quarks Fria - Propriedades

Nos regimes extremos de energia, a QCD apresenta duas propriedades:

- Confinamento: necessária energia infinita para separar dois quarks, no regime de baixas energias.
- Liberdade assintótica: quarks e gluons interagem fracamente em curtas distâncias, no regime de altas energias.

Matéria de Quarks Fria - Propriedades

Nos regimes extremos de energia, a QCD apresenta duas propriedades:

- Confinamento: necessária energia infinita para separar dois quarks, no regime de baixas energias.
- Liberdade assintótica: quarks e gluons interagem fracamente em curtas distâncias, no regime de altas energias.

Para diferentes regiões do diagrama de fases da QCD, é prevista a existência de novas fases da matéria, como a matéria fria de quarks localmente desconfinados, que se existir na Natureza, será no interior das estrelas de nêutrons.

Matéria de Quarks Fria - Diagrama de fases da QCD

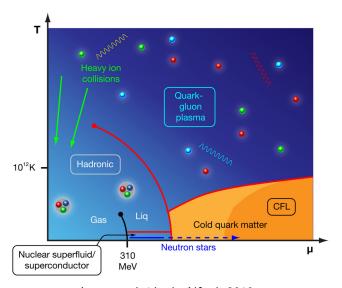


Imagem obtida de Alford, 2010.

Matéria de Quarks Fria - Modelos Efetivos

Muitas vezes é necessário modelar sistemas físicos complicados usando o método da teoria de perturbação. No entanto, como as perturbações irregulares são grandes na QCD, o método não é viável neste contexto.

Matéria de Quarks Fria - Modelos Efetivos

Muitas vezes é necessário modelar sistemas físicos complicados usando o método da teoria de perturbação. No entanto, como as perturbações irregulares são grandes na QCD, o método não é viável neste contexto.

Solução? Modelos Efetivos.

- Lattice QCD.
- Modelos de Sacola.
- QCD de Campo Médio (MFTQCD).
- Extensão Infravermelha da QCD (QCDIRE).

QCD de Campo médio (MFTQCD)

A Teoria do Campo Médio da QCD, desenvolvida por Fogaça e Navarra (2011), é uma teoria baseada na QCD que assume que o campo de glúons pode ser decomposto em componentes de baixos e altos momentos.

$$G^{\alpha\mu} = A^{\alpha\mu}(k) + \alpha(k)^{\alpha\mu}$$

QCD de Campo médio (MFTQCD)

A Teoria do Campo Médio da QCD, desenvolvida por Fogaça e Navarra (2011), é uma teoria baseada na QCD que assume que o campo de glúons pode ser decomposto em componentes de baixos e altos momentos.

$$G^{\alpha\mu} = A^{\alpha\mu}(k) + \alpha(k)^{\alpha\mu}$$

 Os valores médios esperados nos campos de baixos momentos são identificados com condensados de glúons de dimensão dois e quatro.

QCD de Campo médio (MFTQCD)

A Teoria do Campo Médio da QCD, desenvolvida por Fogaça e Navarra (2011), é uma teoria baseada na QCD que assume que o campo de glúons pode ser decomposto em componentes de baixos e altos momentos.

$$G^{\alpha\mu} = A^{\alpha\mu}(k) + \alpha(k)^{\alpha\mu}$$

- Os valores médios esperados nos campos de baixos momentos são identificados com condensados de glúons de dimensão dois e quatro.
- ullet O campo com dimensão dois, $\left\langle g^2A^{lpha\mu}A^{lpha}_{\mu}
 ight
 angle$, gera a chamada massa dinâmica do glúon, m_G .

QCD de Campo médio (MFTQCD)

A Teoria do Campo Médio da QCD, desenvolvida por Fogaça e Navarra (2011), é uma teoria baseada na QCD que assume que o campo de glúons pode ser decomposto em componentes de baixos e altos momentos.

$$G^{\alpha\mu} = A^{\alpha\mu}(k) + \alpha(k)^{\alpha\mu}$$

- Os valores médios esperados nos campos de baixos momentos são identificados com condensados de glúons de dimensão dois e quatro.
- O campo com dimensão dois, $\left\langle g^2A^{\alpha\mu}A^{\alpha}_{\mu}\right\rangle$, gera a chamada massa dinâmica do glúon, m_G .
- O campo com dimensão quatro, $\left\langle \frac{1}{4}F^{\alpha\mu\nu}F^{\alpha}_{\mu\nu}\right\rangle$, gera um termo análogo à constante de sacola na energia e pressão, \mathcal{B}_{QCD} .

A partir de considerações de simetria para os soft gluons e da aproximação de campo médio nos moldes do modelo de Walecka, chega-se na Lagrangiana efetiva:

$$\mathcal{L} = -\frac{1}{2}\alpha_0^{\alpha} \left(\vec{\nabla}^2 \alpha_0^{\alpha} + \frac{m_G^2}{2} \alpha_0^{\alpha} \alpha_0^{\alpha} - b\phi_0^4 \right) + \bar{\psi}_i \left(i\delta_{ij}\gamma^{\mu}\partial_{\mu} + g_h\gamma^0 T_{ij}^{\alpha} \alpha_0^{\alpha} - \delta_{ij}m \right) \psi_j$$

A partir de considerações de simetria para os soft gluons e da aproximação de campo médio nos moldes do modelo de Walecka, chega-se na Lagrangiana efetiva:

$$\mathcal{L} = -\frac{1}{2}\alpha_0^{\alpha} \left(\vec{\nabla}^2 \alpha_0^{\alpha} + \frac{m_G^2}{2} \alpha_0^{\alpha} \alpha_0^{\alpha} - b\phi_0^4 \right) + \bar{\psi}_i \left(i\delta_{ij}\gamma^{\mu}\partial_{\mu} + g_h\gamma^0 T_{ij}^{\alpha} \alpha_0^{\alpha} - \delta_{ij}m \right) \psi_j$$

• α_0 : aproximação de campo médio do campo dos hard gluons $\alpha^{\alpha}_{\mu} \to \left<\alpha^{\alpha}_{\mu}\right> = \alpha^{\alpha}_0 \delta_{\mu 0}.$

A partir de considerações de simetria para os soft gluons e da aproximação de campo médio nos moldes do modelo de Walecka, chega-se na Lagrangiana efetiva:

$$\mathcal{L} = -\frac{1}{2}\alpha_0^{\alpha} \left(\vec{\nabla}^2 \alpha_0^{\alpha} + \frac{m_G^2}{2} \alpha_0^{\alpha} \alpha_0^{\alpha} - b\phi_0^4 \right) + \bar{\psi}_i \left(i\delta_{ij}\gamma^{\mu}\partial_{\mu} + g_h\gamma^0 T_{ij}^{\alpha} \alpha_0^{\alpha} - \delta_{ij}m \right) \psi_j$$

- α_0 : aproximação de campo médio do campo dos hard gluons $\alpha^{\alpha}_{\mu} \to \left<\alpha^{\alpha}_{\mu}\right> = \alpha^{\alpha}_{0}\delta_{\mu 0}.$
- g_H : constante de acomplamento dos hard gluons (g_s foi incorporada nas aproximações do campo).

A partir de considerações de simetria para os soft gluons e da aproximação de campo médio nos moldes do modelo de Walecka, chega-se na Lagrangiana efetiva:

$$\mathcal{L} = -\frac{1}{2}\alpha_0^{\alpha} \left(\vec{\nabla}^2 \alpha_0^{\alpha} + \frac{m_G^2}{2} \alpha_0^{\alpha} \alpha_0^{\alpha} - b\phi_0^4 \right) + \bar{\psi}_i \left(i\delta_{ij}\gamma^{\mu}\partial_{\mu} + g_h\gamma^0 T_{ij}^{\alpha} \alpha_0^{\alpha} - \delta_{ij}m \right) \psi_j$$

- α_0 : aproximação de campo médio do campo dos hard gluons $\alpha^{\alpha}_{\mu} \to \left<\alpha^{\alpha}_{\mu}\right> = \alpha^{\alpha}_{0}\delta_{\mu 0}.$
- g_H : constante de acomplamento dos hard gluons (g_s foi incorporada nas aproximações do campo).
- m_G : massa dinâmica do gluon.

QCD de Campo Médio - Energia

Energia

$$\varepsilon = \left(\frac{27}{16}\right) \left(\frac{g}{m_G}\right)^2 \rho_B^2 + \mathcal{B}_{QCD}$$

$$+ \sum_{i=u,d,s} 3 \frac{\gamma_Q}{2\pi^2} \left\{ \frac{k_i^3 \sqrt{k_i^2 + m_i^2}}{4} + \frac{m_i^2 k_i \sqrt{k_i^2 + m_i^2}}{8} \right.$$

$$- \frac{m_i^4}{8} ln \left[k_i + \sqrt{k_i^2 + m_i^2} \right] + \frac{m_i^4}{16} ln(m_i^2) \right\}$$

$$+ \frac{\gamma_e}{2\pi^2} \left\{ \frac{k_e^3 \sqrt{k_e^2 + m_e^2}}{4} + \frac{m_e^2 k_e \sqrt{k_e^2 + m_e^2}}{8} \right.$$

$$- \frac{m_e^4}{8} ln \left[k_i + \sqrt{k_e^2 + m_e^2} \right] + \frac{m_e^4}{16} ln(m_e^2) \right\}$$

QCD de Campo Médio - Energia

Energia

$$\varepsilon = \left(\frac{27}{16}\right) \left(\frac{g}{m_G}\right)^2 \rho_B^2 + \mathcal{B}_{QCD} \qquad \text{Parâmetro } \xi$$

$$+ \sum_{i=u,d,s} 3 \frac{\gamma_Q}{2\pi^2} \left\{ \frac{k_i^3 \sqrt{k_i^2 + m_i^2}}{4} + \frac{m_i^2 k_i \sqrt{k_i^2 + m_i^2}}{8} \right.$$

$$- \frac{m_i^4}{8} ln \left[k_i + \sqrt{k_i^2 + m_i^2} \right] + \frac{m_i^4}{16} ln(m_i^2) \right\}$$

$$+ \frac{\gamma_e}{2\pi^2} \left\{ \frac{k_e^3 \sqrt{k_e^2 + m_e^2}}{4} + \frac{m_e^2 k_e \sqrt{k_e^2 + m_e^2}}{8} \right.$$

$$- \frac{m_e^4}{8} ln \left[k_i + \sqrt{k_e^2 + m_e^2} \right] + \frac{m_e^4}{16} ln(m_e^2) \right\}$$

QCD de Campo Médio - Pressão

Pressão

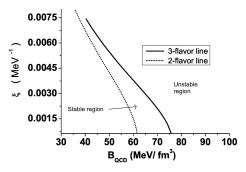
$$p = \left(\frac{27g^2}{16m_G^2}\right) \rho_B^2 - \mathcal{B}_{QCD}$$

$$+ \sum_{i=u,d,s} \frac{\gamma_Q}{2\pi^2} \left\{ \frac{k_i^3 \sqrt{k_i^2 + m_i^2}}{4} - \frac{3m_i^2 k_i \sqrt{k_i^2 + m_i^2}}{8} + \frac{3m_i^4}{8} ln \left[k_i + \sqrt{k_i^2 + m_i^2} \right] - \frac{3m_i^4}{16} ln(m_i^2) \right\}$$

$$+ \frac{\gamma_e}{6\pi^2} \left\{ \frac{k_e^3 \sqrt{k_e^2 + m_e^2}}{4} - \frac{3m_e^2 k_e \sqrt{k_e^2 + m_e^2}}{8} + \frac{3m_e^4}{8} ln \left[k_e + \sqrt{k_e^2 + m_e^2} \right] - \frac{3m_e^4}{16} ln(m_e^2) \right\}$$

QCD de Campo Médio - Parâmetros

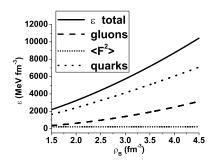
- Busca-se uma região de parâmetros que seja instável para que a transição de fase ocorra.
- Valores à esquerda da linha sólida são absolutamente estáveis.
- Os modelos estelares decorrentes da matéria estável foi estudado por Franzon et al. (2012).

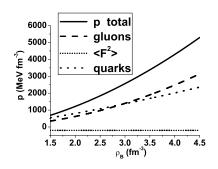


QCD de Campo Médio - Parâmetros

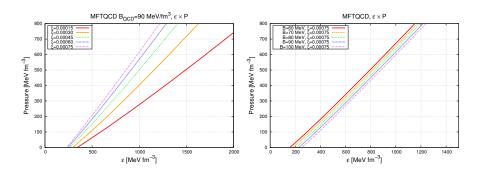
Sensibilidade de parâmetros do Modelo MFTQCD

- Alta sensibilidade ao parâmetro $\xi = \frac{q}{m_G}$.
- Baixa sensibilidade ao parâmetro $\mathcal{B}_{QCD}=\left\langle rac{1}{4}F^{lpha\mu
 u}F^{lpha}_{\mu
 u}
 ight
 angle =\left\langle F^{2}
 ight
 angle .$





QCD de Campo Médio - Equação de Estado



Extensão Infravermelha da QCD (QCDIRE)

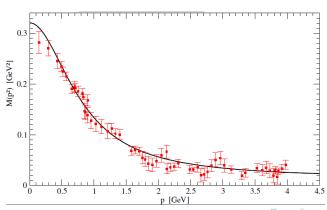
Confinamento

- Não existe consenso para um critério teórico para o confinamento.
- Osterwalder e Schrader (1973) sugerem que o confinamento está codificado na violação de positividade de reflexão do propagador do quark.

Extensão Infravermelha da QCD (QCDIRE)

Parametriza o propagador do quark em 3 constantes, obtidas através de simulações computacionais na rede.

$$M_{eff}(p) = \frac{\Delta}{p^2 + m^2} + m_0$$



Extensão Infravermelha da QCD

- Ponto de partida: Ação equivalente à da QCD em altas energias.
- O cálculo é exato, a partir da função de partição.

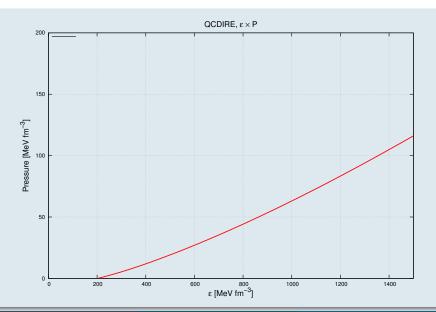
No limite $T \rightarrow 0$

$$\log Z(0,\mu) = 2\beta V N_c N_f \int \frac{d^3 p}{(2\pi)^3} \int_0^\infty \frac{d\theta}{2\pi} \left[f(i\theta + \mu) + f(-i\theta + \mu) \right]$$

$$f(\xi) = \log \left\{ \frac{\Omega_{\mathbf{p}}^2(\xi^2) - \xi^2}{\Omega_{\mathbf{p}}^2[(\xi - \mu)^2] - (\xi - \mu)^2} \right\}$$

$$\Omega_{\mathbf{p}}^2(\zeta) = \mathbf{p}^2 + \left[\frac{M_3}{-\zeta + \mathbf{p}^2 + m^2} + m_0 \right]^2$$

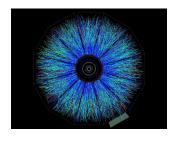
Extensão Infravermelha da QCD - Equação de Estado



Presença de CQM em Estrelas de Nêutrons

Presença de CQM em Estrelas de Nêutrons

- No Relativistic Heavy Ion Collider (RHIC) já foram observados sistemas com temperatura alta e potencial químico próximo de zero.
- Espera-se que um sistema com potencial químico alto e temperatura próxima de zero exista em estrelas de nêutrons.



Fases da QCD

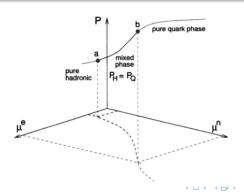
Transições de Fase

Podem existir transições de fase no interior de estrelas de nêutrons, da matéria hadrônica para a matéria de quarks fria, a partir de uma densidade crítica.

- As densidades em questão serão acima da densidade da matéria nuclear.
- A temperatura do interior destes objetos $(10^6-10^7~{\rm K})$ é pequena em comparação com a escala da energia nuclear.
- Número bariônico conservado.
- Estranheza não conservada.
- A carga elétrica total deve ser nula.

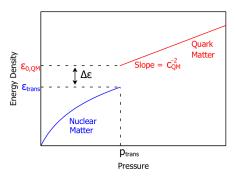
Transições de fase contínuas

- Leva em conta o conceito de cargas conservadas, onde o número bariônico e a carga elétrica seriam estas cargas, e a conservação deve ser global e não local.
- Transição ocorre com uma fase de coexistência chamada fase mista.
- A fase mista possui estrutura, chamada pasta nuclear.

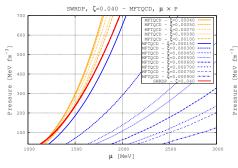


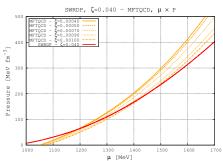
Transições de fase descontínuas

- Transição ocorre em uma sharp interface.
- Segue os critérios da construção de Maxwell:
 - $\mu_H = \mu_Q$
 - $P_H = P_Q$
 - $T_H = T_Q$



Transição SWRDP \rightarrow MFTQCD - Constr. de Maxwell





Equação de Estado SWRDP + MFTQCD

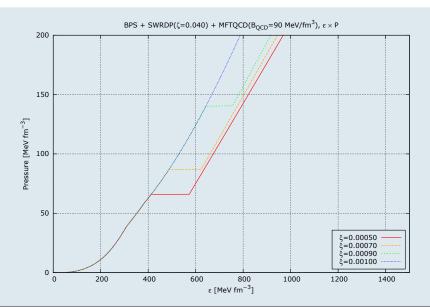
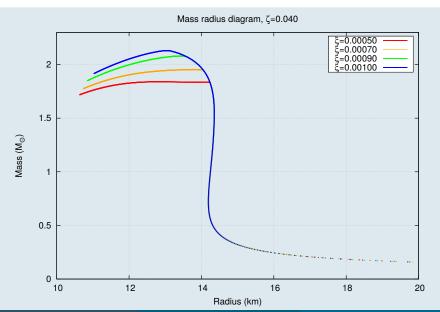


Diagrama Massa-Raio

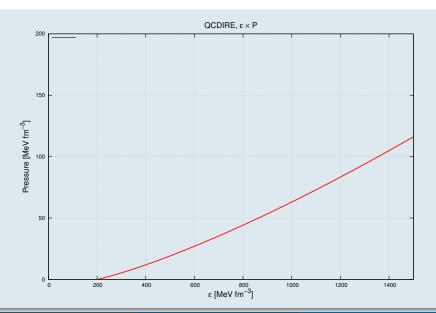


Massas máximas e Raios - Diferentes parametrizações

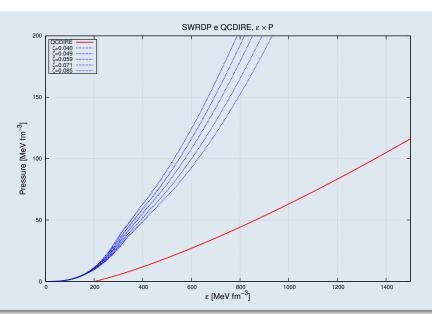
	ζ	ξ	M_{max}/M_{\odot}	Raio	Densidade central	Tipo
				km	MeV/fm^3	
\leftarrow <i>MFTQCD</i> : Stiffness : <i>SWRDP</i> \rightarrow	0.040	0.00050	1.84	12.82	936	Híbrida
		0.00070	1.95	13.81	698.8	Híbrida
		0.00090	2.08	13.42	815.8	Híbrida
		0.00100	2.13	13.06	936.7	Híbrida
	0.049	0.00040	1.81	12.53	1013.2	Híbrida
		0.00050	1.85	12.87	919	Híbrida
		0.00070	1.96	13.28	817.9	Híbrida
		0.00090	2.06	12.72	1014.6	Híbrida
	0.059	0.00040	1.82	12.55	999	Híbrida
		0.00050	1.86	12.79	933.9	Híbrida
		0.00070	1.96	12.71	970.45	Híbrida
		0.00090	1.99	11.94	1167.9	Hadrônica
	0.071	0.00040	1.83	12.45	1013.2	Híbrida
		0.00050	1.87	12.43	1024.8	Híbrida
		0.00070	1.91	11.66	1245.8	Hadrônica
	0.085	0.00040	1.82	11.76	1272.9	Híbrida

PSR J1614-2230, PSR J1614-2230 e J0348+0432

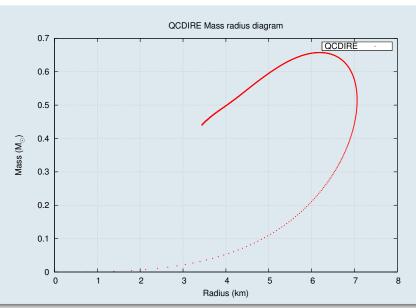
Equação de Estado QCDIRE



Equação de Estado QCDIRE



Equação de Estado QCDIRE - Diagrama Massa-Raio



Teoria da Informação

Questão: Existem estados (equações de estado, dentro do contexto desta tese) preferidos na Natureza?

- Como limitar as possíveis equações de estado dentre a vasta gama de equações existentes?
- A Teoria da Informação é baseada no conceito da entropia de Shannon (também conhecido como entropia da informação ou entropia lógica), que é relacionada aos bits de informação armazenada no sistema.

Teoria da Informação

Questão: Existem estados (equações de estado, dentro do contexto desta tese) preferidos na Natureza?

- Como limitar as possíveis equações de estado dentre a vasta gama de equações existentes?
- A Teoria da Informação é baseada no conceito da entropia de Shannon (também conhecido como entropia da informação ou entropia lógica), que é relacionada aos bits de informação armazenada no sistema.

Grandezas relacionadas

- Informação(H, bits ou nats): Definida em termos da probabilidade de um evento ocorrer.
- Desequilíbrio(D): Mede a distância do sistema estudado da equiprobabilidade.
- Complexidade(C): Grandeza que relaciona Informação e Desequilíbrio, definida por $C = H \times D$.

Teoria da Informação - Conceitos principais

Complexidade

Codifica ordem e desordem (auto-organização do sistema), baseado em dois sistemas ideais, em pontos extremos:

- Cristal perfeito: Complexidade zero por definição; densidade de probabilidade centrada em um estado de simetria perfeita \rightarrow informação mínima. Completamente ordenado.
- ullet Gás ideal: Complexidade zero por definição; todos os estados acessíveis são equiprováveis ullet informação máxima. Completamente desordenado.

Teoria da Informação - Conceitos principais

Complexidade

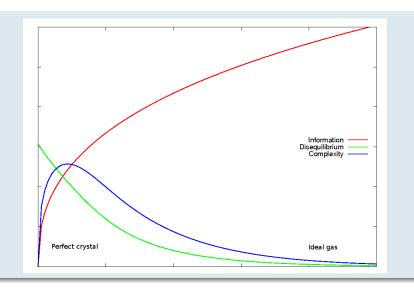
Codifica ordem e desordem (auto-organização do sistema), baseado em dois sistemas ideais, em pontos extremos:

- Cristal perfeito: Complexidade zero por definição; densidade de probabilidade centrada em um estado de simetria perfeita → informação mínima. Completamente ordenado.
- Gás ideal: Complexidade zero por definição; todos os estados acessíveis são equiprováveis ightarrow informação máxima. Completamente desordenado.

Critério

- Complexidades menores indicam sistemas mais cristalinos, mais ordenados.
- Assume-se que ordenação possui um "custo".
- Logo, objetos mais complexos seriam preferidos de acordo com a teoria da informação.

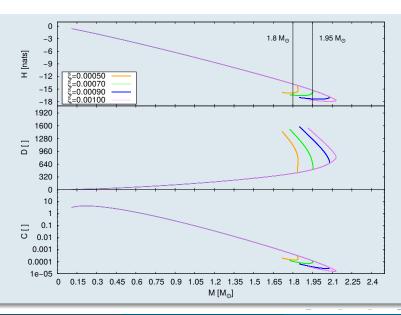
Teoria da Informação - Gráfico de Intuição



Entropia de Informação - Resultados com ζ fixo

- Comparando equações de estado dentro do ramo estável, o parâmetro ζ não exerce nenhuma influência em nenhuma das grandezas H, D ou C.
- Equações de estado com mesma composição hadrônica (i.e. ζ fixo) seriam igualmente favorecidas na natureza.

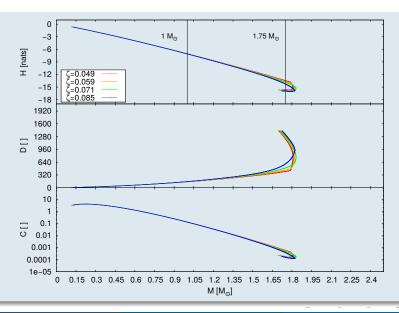
Entropia de Informação - ζ fixo



Entropia de Informação - Resultados com ξ fixo

- Massas baixas (na região de 1 M_{\odot}), com ausência de núcleo de quarks, a teoria mostra que não existiria favorecimento na Natureza para EoSs hadrônicas mais rígidas ou mais moles.
- Em regiões com maior massa (a partir de $\approx 1.5~M_{\odot}$), a rigidez da equação hadrônica exerce influência nas grandezas.
- No limite do aparecimento do núcleo de quarks, as equações hadrônicas mais rígidas seriam mais favorecidas.

Entropia de Informação - ξ fixo



Modelo Einstein-Maxwell-Fermi

- O modelo não é adequado para o cálculo de estruturas com equações de estado híbrida, pois leva apenas graus de liberdade hadrônicos.
- O conceito principal aplicado na construção do modelo é um scaling, introduzindo correções em determinados limites.
- A neutralidade global realmente não é introduzida no modelo, mas aparece ab initio, considerando que é baseada no modelo atômico que é intrinsecamente neutro.

Equação de Estado SWRDP-MFTQCD

Modelo concorda com as observações dos pulsares PSR J1614–2230 ($M=1.97\pm0.04M_{\odot}$) e PSR J0348+0432 ($M=2.01\pm0.04M_{\odot}$) nas seguintes condições:

- A matéria hadrônica no limite superior de 'stiffness', representado pelos valores de ζ mais altos.
- Matéria de quarks no limite da matéria mais 'soft', representado pelos valores de ξ mais baixos.

Equação de Estado QCDIRE

- Considerar apenas o confinamento dos quarks não é suficiente para garantir a existência de matéria de quarks a partir de densidades menores.
- Necessidade de incluir novas interações repulsivas ao modelo.

Conclusões- Teoria da Informação

SWRDP fixa, parametrizações da MFTQCD variáveis

• Em modelos com a mesma parametrização hadrônica (ζ fixo), a composição de quarks não exerce influência na preferência da Natureza.

SWRDP variável, parametrizações de MFTQCD fixa

• Em modelos com a mesma parametrização de quarks (ξ fixo), a Natureza apresenta preferência por modelos onde a matéria hadrônica é mais dura para massas acima de $1.75 M_{\odot}$. Para massas menores, onde não há núcleo de quarks, não existe preferência.

Perspectivas e Futuros Estudos

- Repetir o estudo contemplando transições de fase contínuas.
- Investigar a transição de fase com outras equações de estado de quarks.
- Investigar os efeitos da inclusão de campos magnéticos e rotação nos modelos estudados.
- Acrescentar novas interações repulsivas no modelo QCDIRE para aumentar a 'stiffness' da equação de estado.

Fim

Obrigado!

